metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Guang-Bo Che,* Zhan-Lin Xu and Chun-Bo Liu

Department of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail: guangbochejl@yahoo.com

Key indicators

Single-crystal X-ray study T = 292 K Mean σ (C–C) = 0.004 Å R factor = 0.039 wR factor = 0.103 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[(pyrazino[2,3-*f*][1,10]phenanthroline)copper(I)]-μ₂-chloro]

In the title compound, $[CuCl(C_{14}H_8N_4)]_n$, the central Cu^I ion displays a distorted tetrahedral geometry, coordinated by two Cl⁻ ions and two N atoms from a bidentate pyrazino[2,3-*f*]-[1,10]phenanthroline (PyPhen) ligand. Each Cl⁻ ion bridges two Cu^I atoms, forming a zigzag chain structure. Cu and Cl have site symmetry 2; the complete PyPhen molecule is generated by twofold symmetry.

Comment

Inorganic-organic coordination polymers based on Cu^I halides and aromatic nitrogen-donor ligands have been attracting increasing interest (Ford et al., 1999). Previous results have shown that Cu^I halides can be combined with monodentate nitrogen-donor ligands, producing a wide array of structural types (Ohi et al., 2005; Wang et al., 2005). However, Cu^I halides with chelating bidentate nitrogen-donor ligands have rarely been investigated (Haddad & Willett, 2001). The 1,10-phenanthroline (Phen) ligand has been widely used to build novel supramolecular architectures through aromatic π - π interactions (Chen & Liu, 2002), while an important derivative of Phen, pyrazino[2,3-*f*][1,10]phenanthroline (PyPhen), was recently used to synthesize coordination polymers (Che, 2006). We selected the chloride ion as a linker and PyPhen as a secondary chelating ligand, generating a new Cu^I coordination polymer, [CuCl(PyPhen)], (I), which is reported here.

The central Cu^I ion (site symmetry 2) in (I) displays a distorted tetrahedral geometry, coordinated (Table 1) by two Cl⁻ ions and two N atoms from PyPhen (Fig. 1). The complete PyPhen molecule is built up by a twofold axis that bisects the C4-C4ⁱ, C6-C6ⁱ and C7-C7ⁱ bonds [symmetry code: (i) $1 - x, y, \frac{1}{2} - z$]. Each Cl⁻ ion (site symmetry 2) bridges two Cu^I atoms, generating a distinctive zigzag chain structure (Fig. 2) that propagates along [100]. The PyPhen ligands are thus attached to one side of a single-stranded chain.

© 2006 International Union of Crystallography All rights reserved Received 19 May 2006

Accepted 19 May 2006

Figure 1

The asymmetric unit of (I), together with further atoms to complete the Cu^I coordination and the PyPhen ligand. Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms). [Symmetry codes: (i) $1 - x, y, \frac{1}{2} - z$; (ii) x - 1, y, z.]

Figure 2

View of the single-chain polymeric structure of (I).

Figure 3

View of the packing of (I), with $C-H \cdots Cl$ interactions shown as dashed lines.

Experimental

The PyPhen ligand was synthesized according to the literature method of Dickeson & Summers (1970). Compound (I) was hydrothermally synthesized under autogenous pressure: a mixture of PyPhen, CuCl₂ and water in a molar ratio of 2:1:5000 was sealed in a Teflon-lined autoclave and heated to 453 K for 3 d. Upon cooling and opening the bomb, orange plates and slabs of (I) were obtained (45% vield based on Cu).

Crystal data

$[CuCl(C_{14}H_8N_4)]$	Z = 2
$M_r = 331.23$	$D_x = 1.854 \text{ Mg m}^{-3}$
Monoclinic, $P2/c$	Mo $K\alpha$ radiation
a = 3.7354 (7) Å	$\mu = 2.06 \text{ mm}^{-1}$
b = 12.099 (2) Å	T = 292 (2) K
c = 13.129 (3) Å	Slab, orange
$\beta = 91.33 \ (3)^{\circ}$	$0.31 \times 0.28 \times 0.19 \text{ mm}$
$V = 593.2 (2) \text{ Å}^3$	

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.539, T_{\max} = 0.679$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ wR(F²) = 0.103 S = 1.081358 reflections 92 parameters H-atom parameters constrained 5650 measured reflections 1358 independent reflections 1067 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.042$ $\theta_{\rm max} = 27.5^{\circ}$

 $w = 1/[\sigma^2(F_0^2) + (0.0449P)^2]$ + 0.4657P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cl1-Cu1	2.3013 (7)	Cu1-N1	2.094 (2)	
$N1^{i}$ -Cu1-N1 N1-Cu1-Cl1 ⁱⁱ	79.52 (13) 128.23 (7)	N1-Cu1-Cl1 Cl1 ⁱⁱ -Cu1-Cl1	106.22 (7) 108.50 (5)	

Symmetry codes: (i) -x + 1, y, $-z + \frac{1}{2}$; (ii) x - 1, y, z.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots Cl1^{iii}$	0.93	2.87	3.720 (4)	153
Summature and a (iii)				

Symmetry code: (iii) -x + 2, -y, -z.

All H atoms were positioned geometrically and refined as riding atoms, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997);

metal-organic papers

program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL97*.

The authors thank Jilin Normal University for supporting this work.

References

Che, G.-B. (2006). Acta Cryst. E62, m1244-m1246.

Chen, X.-M. & Liu, G.-F. (2002). Chem. Eur. J. 8, 4811-4817.

Dickeson, J. E. & Summers, L. A. (1970). Aust. J. Chem. 23, 1023–1027.

Ford, P. C., Cariati, E. & Bourassa, J. (1999). Chem. Rev. 99, 3625-3647.

Haddad, S. & Willett, R. D. (2001). Inorg. Chem. 40, 809-811.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Ohi, H., Tachi, Y., Kunimoto, T. & Itoh, S. (2005). Dalton Trans. pp. 3146–3147.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Góttingen, Germany.

Wang, X. Q., Cheng, J. K., Wen, Y. H., Zhang, J., Li, Z. J. & Yao, Y. G. (2005). Inorg. Chem. Commun. 8, 897–899.